skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Goppert, James M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Finding collision-free paths is crucial for autonomous multi-robots (AMRs) to complete assigned missions, ranging from search operations to military tasks. To achieve this, AMRs rely on collaborative collision avoidance algorithms. Unfortunately, the robustness of these algorithms against false data injection attacks (FDIAs) remains unexplored. In this paper, we introduce Raven, a tool to identify effective and stealthy semantic attacks (eg, herding). Effective attacks minimize positional displacement and the number of false data injections by using temporal logic and stochastic optimization techniques. Stealthy attacks remain within sensor noise ranges and maintain spatiotemporal consistency. We evaluate Raven against two state-of-the-art collision avoidance algorithms, ORCA and GLAS. Our results show that a single false data injection impacts multi-robot systems by causing position deviation or even collisions. We evaluate Raven on three testbeds–a numerical simulator, a high-fidelity simulator, and Crazyflie drones. Our results reveal five design flaws in these algorithms and underscore the importance of developing robust defenses against FDIAs. Finally, we propose countermeasures to mitigate the attacks we have uncovered. 
    more » « less